The generator matrix

 1  0  0  0  1  1  1  0  0 X^2 X^2  1  1  1  1  1 X^2+X  1  X  1 X^2+X  1 X^2+X  1 X^2  1  0  1  1 X^2  0  1 X^2+X  1 X^2+X  1  1  X  X X^2+X  1  1 X^2  1 X^2 X^2  1 X^2+X  0  X  0  1  1  X  1  1  1  1  0  1  0  1  1  1  1  1  1  1  0 X^2  1  1  X  1 X^2+X X^2+X  1 X^2+X  1 X^2  X  1 X^2  0  X  1  1  1  0  1 X^2+X X^2+X  X X^2  1
 0  1  0  0  0 X^2 X^2 X^2  1  1  1 X^2+X+1 X+1 X+1 X^2+X+1  X  X X+1  1 X+1  1  X  0 X^2+1  0 X^2  1 X^2+1 X^2+X  1  1 X^2+X  1 X+1 X^2 X^2+1  0 X^2  X  1  X  1  1  0  0  1  X X^2+X X^2+X  1  X X^2+1 X^2+X+1  1  1 X^2+1  0  1 X^2  X  1 X+1 X^2+X X^2+X  1 X+1 X^2 X^2+X+1  1 X^2+X  0 X^2+X  1  0  1  1 X+1  1  X X^2+X  1  1  1  0  1 X^2+1 X^2  X  1  1  1  1  0  0  0
 0  0  1  0 X^2  1 X^2+1  1 X+1  0 X+1 X^2+1 X^2  0  1  X  1  1 X+1 X^2+X X^2+X+1 X+1  1 X^2+1  X  X X^2+X  0  1 X^2 X^2+X+1 X^2 X^2+1 X+1  0 X^2 X^2+X+1  1  1 X^2+X X^2 X^2+X+1  X  0  1 X^2+X X^2+X  0  1 X^2+1  1  X X^2+X X+1 X^2+X  1 X^2+X X+1  1 X^2+1 X^2+1 X^2 X^2+1  0 X^2 X^2+X X^2+X X+1 X^2+1  1 X^2+1  X X^2+X+1  1 X^2 X^2  0 X^2+1 X^2+X+1  1 X^2+X  1 X^2  1 X+1  X  X X^2+1 X+1 X+1 X^2+X+1 X+1  X X^2+X  0
 0  0  0  1 X^2+X+1 X^2+X+1  0 X+1 X^2  1 X^2+1 X^2+X+1 X+1 X^2  0  0 X^2  1 X+1  0 X^2 X^2 X+1 X^2+X  1 X^2+1  1 X+1 X+1  X  X  X X+1 X^2+1  1 X^2+1 X^2+1 X^2+1 X^2+X  1  0 X^2+X X+1  X X^2+X  0 X+1  1  0 X^2+X X^2+X+1  X X^2+1 X^2+X X^2+X+1  0 X+1  1 X^2+1 X^2 X^2+1 X^2+1 X^2+X X^2+X+1 X^2+X X^2+X X^2  X X^2+X+1  X X^2+1  X  1 X^2+X  X  0 X^2+1 X^2+X  X X^2+1 X^2+X X^2+1 X^2 X^2+X+1 X^2 X^2+1 X+1 X^2+X+1 X^2+X+1  0 X^2+X X+1  1  1  0

generates a code of length 95 over Z2[X]/(X^3) who�s minimum homogenous weight is 88.

Homogenous weight enumerator: w(x)=1x^0+88x^88+240x^89+366x^90+410x^91+360x^92+370x^93+369x^94+282x^95+255x^96+236x^97+210x^98+206x^99+139x^100+116x^101+104x^102+94x^103+67x^104+48x^105+56x^106+32x^107+17x^108+10x^109+15x^110+1x^112+4x^113

The gray image is a linear code over GF(2) with n=380, k=12 and d=176.
This code was found by Heurico 1.16 in 1.25 seconds.